Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Downsizing noble metal catalysts is essential for improving atomic efficiency in sustainable energy applications. Typically, strategies focus on anchoring atomically scaled catalysts onto heteroatom-rich substrates, but these interactions can unintentionally alter the electronic structure of the catalyst, complicating the hydrogen evolution reaction (HER) mechanism. This study focuses on elucidating the interfacial mechanism of HER using structurally well-defined platinum single-atom (Pt SA) electrocatalysts. Unlike chemically reduced SAs, electrochemically deposited Pt SA catalysts do not rely on strong support interactions. As a result, these isolated Pt atoms can potentially achieve the theoretical maximum hydrogen production efficiency. This work introduces electrocatalysts composed solely of true SA sites, clarifying previous ambiguities surrounding the concept of SA electrocatalysis.more » « less
-
CO2capture from post-combustion flue gas originating from coal or natural gas power plants, or even from the ambient atmosphere, is a promising strategy to reduce the atmospheric CO2concentration and achieve global decarbonization goals. However, the co-existence of water vapor in these sources presents a significant challenge, as water often competes with CO2for adsorption sites, thereby diminishing the performance of adsorbent materials. Selectively capturing CO2in the presence of moisture is a key goal, as there is a growing demand for materials capable of selectively adsorbing CO2under humid conditions. Among these, metal–organic frameworks (MOFs), a class of porous, highly tunable materials, have attracted extensive interest for gas capture, storage, and separation applications. The numerous combinations of secondary building units and organic linkers offer abundant opportunities for designing systems with enhanced CO2selectivity. Interestingly, some recent studies have demonstrated that interactions between water and CO2within the confined pore space of MOFs can enhance CO2uptake, flipping the traditionally detrimental role of moisture into a beneficial one. These findings introduce a new paradigm: water-enhanced CO2capture in MOFs. In this review, we summarize these recent discoveries, highlighting examples of MOFs that exhibit enhanced CO2adsorption under humid conditions compared to dry conditions. We discuss the underlying mechanisms, design strategies, and structural features that enable this behavior. Finally, we offer a brief perspective on future directions for MOF development in the context of water-enhanced CO2capture.more » « less
-
Metal-organic frameworks (MOFs) have been examined extensively for CO2 capture, and the influence of water co-adsorption on these processes is particularly relevant, as CO2 capture generally occurs in humid gas streams. To investi-gate CO2/H2O co-adsorption, binary adsorption isotherms of CO2 and H2O were measured on MOF-808-TFA (TFA = trifluoro-acetic acid). When water was pre-adsorbed on MOF-808-TFA, and a subsequent CO2 adsorption isotherm was measured, the CO2 adsorption was slightly reduced, as expected. However, when CO2 was adsorbed first and then an H2O adsorption iso-therm was measured, no significant H2O adsorption capacity was observed. The near complete loss of water adsorption ca-pacity was observed even when only a trace amount of CO2 was pre-adsorbed. The results show that unexpected, non-state function adsorption equilibria can result from dynamic MOF behaviors and defect sites, which may lead to counterintuitive adsorption data compared to traditional materials.more » « less
-
Recently, many experiments have been conducted with the goal of demonstrating a quantum advantage over classical computation. One popular framework for these experiments is Gaussian boson sampling, where quadratic photonic input states are interfered via a linear optical unitary and subsequently measured in the Fock basis. In this paper, we study the modal entanglement of the output states in this framework just before the measurement stage. Specifically, we compute Page curves as measured by various Rényi- entropies, where the Page curve describes the entanglement between two partitioned groups of output modes averaged over all linear optical unitaries. We derive these formulas for (i.e., the von Neumann entropy) and, more generally, for all positive integer , in the asymptotic limit of infinite number of modes and for input states that are composed of single-mode-squeezed-vacuum state with equal squeezing strength. We then analyze the limiting behaviors when the squeezing is small and large. Having determined the averages, we then explicitly calculate the Rényi- variance for integers and are able to show that these entropies are weakly typical. Published by the American Physical Society2025more » « less
-
Abstract Cisco (Coregonus artedi) are a widespread, cold‐water zooplanktivore native to North America. Although Cisco are generally referred to as an “obligate zooplanktivore,” there is some evidence that the species exhibits considerable variability in trophic niche. Here, we assessed how Cisco body size relates to trophic position, that is, trophic ontogeny. We analysed13C and15N isotopes from Cisco ranging from 127 to 271 mm in body length (n = 66) from Trout Lake, Vilas County, Wisconsin, USA.15N isotopes showed smaller Cisco had a trophic position of ~3, which steadily increased to ~3.5 for larger Cisco. Further,13C isotope signatures showed Cisco transitioned to be more pelagically reliant (lower13C signatures). Using gillnet catch data, we found that larger Cisco were using deeper habitats than smaller Cisco. Our results support that Cisco have significant variability in trophic niche even though they are traditionally thought of as an obligate planktivore. Overall, we emphasize that researchers should be cautious when generalizing Cisco trophic function, particularly when considering the broader food web.more » « less
-
We report two conjugates of gem-diethyl pyrroline nitroxide radicals with D-mannosamine as potential metabolic organic radical contrast agents, mORCAs, circumventing the need for biorthogonal reactions. In-cell EPR spectroscopy, using Jurkat cells and analogous conjugate, based on a pyrrolidine nitroxide radical, shows an efficient incorporation of highly immobilized nitroxides, with a correlation time of τcor = 20 ns. In vivo MRI experiments in mice show that the paramagnetic nitroxide radical shortens the T1 and T2 relaxation times of protons in water located in the kidney and brain by only up to ~10% after 3 d. Ex vivo EPR spectroscopic analyses indicate that the contrast agents in mouse tissues are primarily localized in the kidney, lung, liver, heart, and blood, which primarily contain immobilized nitroxide radicals with τcor = 4–9 ns. The spin concentrations in tissues remain low (1–3 nmol g⁻1) at 24 h after the third mORCA injection, approximately one to two orders of magnitude lower than those of ORCAFluor and BASP-ORCA (measured at ~24 h post-injection). These low spin concentrations explain the small proton T1 and T2 relaxation changes observed in in vivo MRI.more » « less
-
We investigate the effect of three-dimensionality on the synchronisation characteristics of the wake behind an oscillating circular cylinder at$${\textit {Re}} = 300$$. Cylinder oscillations in rotation, transverse translation and streamwise translation are considered. We utilise phase-reduction analysis, which quantifies the phase-sensitivity function of periodic flows, to examine the synchronisation properties. Here, we present an ensemble-based framework for phase-reduction analysis to handle three-dimensional wakes that are not perfectly time-periodic. Based on the phase-sensitivity functions, synchronisability to three types of cylinder oscillations is evaluated. In spite of similar trends, we find that phase-sensitivity functions involving three-dimensional wakes are lower in magnitude compared with those of two-dimensional wakes, which leads to narrower conditions for synchronisation to weak cylinder oscillations. We unveil that the difference between the phase-sensitivity functions of two- and three-dimensional flows is strongly correlated to the amplitude variation of the three-dimensional flow by the cylinder motions. This finding reveals that the cylinder motion modifies the three-dimensionality of the wake as well as the phase of vortex shedding, which leads to reduced phase modulation. The synchronisation conditions of three-dimensional wakes, predicted by phase-reduction analysis, agree with the identification by parametric studies using direct numerical simulations for forced oscillations with small amplitudes. This study presents the potential capability of phase-reduction to study synchronisation characteristics of complex flows.more » « less
An official website of the United States government
